BK21플러스 분자의학 및 바이오제약의 글로벌중개연구사업단 귀국보고서

소속	BK21플러스 분자의학 및 바이오제약의 글로벌중개연구사업단		
직 급	대학원생(석사과정)	성명	방미라
승 인 여 행 기 간	2017. 1. 27 ~ 2017. 2. 5		
여 행 기 간	2017. 1. 27 ~ 2017. 2. 5		
여 행 국 (도 시 명)	미국(콜로라도 덴버)		
여 행 목 적	2017 Keystone Symposia on Molecular and Cellular Biology 참여		
주 요 . 방 문 일 정	■ 2017 Keystone Symposia on Molecular and Cellular Biology - Omics Strategies to Study the Proteome (A8) 포스터 발표		
활 동 내 용 (보고서요약)	■ 2017 Keystone Symposia on Molecular and Cellular Biology - Omics Strategies to Study the Proteome (A8) 포스터 발표 - 오글루넥 당화 단백체 연구 관련 공동 연구 논의 - 학회 프로그램 참여		
제 출 인	방미라		
첨 부	초청장, 프로그램, 여권사본		

Mapping of protein *O*-GlcNAc modification sites using a radical generating *N*-terminal chemical tagging

Min Jueng Kang¹, Mi Ra Bang¹, In Su Song², Han Bin Oh² and Eugene C. Yi^{1*}

¹Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea, ²Department of Chemistry, Sogang University, Seoul, Korea

Protein *O*-GlcNAcylation, a post-translational modification to serine or threonine residues of nuclear and cytoplasmic proteins, is known to be involved in biological and pathophysiological processes, such as type 2 diabetes, cancers, cardiovascular and neurodegenerative disorders. Despite its physiological significance, accurate identification of site specific *O*-GlcNAcylation on protein remains analytical challenges due to lability of *O*-GlcNAcylation for direct analysis by mass spectrometry (MS). Here, we are reporting a new experimental method by an *N*-terminal chemical tagging for O-GlcNAcome profiling and their *O*-GlcNAcylation site mapping with conventional collision-induced dissociation (CID)- or higher energy collisional dissociation (HCD)-based MS analysis. The method is combined with (i) lectin-based *O*-GlcNAc modified peptides enrichment and (ii) the chemical-assisted free radical initiated peptide sequencing with MS (FRIPS-MS). We will demonstrate that our new method leads to greatly improved MS/MS spectral quality which in turn allows confident identification of *O*-GlcNAc modified peptides and accurate modification sites in global *O*-GlcNAcome profiling. We, therefore, anticipate that further application of the radical generating *N*-terminal chemical tagging method to biological systems, which would result in discovery of new *O*-GlcNAcylated proteins and elucidating the functional roles of protein *O*-GlcNAcylation in many cellular processes.

Funding acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning NRF-2012M3A9B9036669, NRF-2015M3A9B6073840, NRF-2016R1A5A1010764 to E.C.Y. and NRF-2015R1C1A1A02037274 to M.J.K.

BK21플러스 분자의학 및 바이오제약의 글로벌 중개연구 사업단

국제 학술대회 점검 기준표

사업단(팀)명	BK21플러스 분자의학 및 바이오제약의 글로벌 중개연구 사업단		
학회일정	January 29-February 2, 2017	과제번호	5288-20140100
학술회의명	2017 Keystone Symposia on Molecular and Cellular Biology - Omics Strategies to Study the Proteome (A8)	학회지(장소)	Breckenridge, Colorado USA

- 1. 주관기관 : Keystone Symposia
- 2. 총 참여 국가(발표자의 소속국가): 7 개국

(미국, 이스라엘, 캐나다, 스위스, 중국, 한국, 호주)

3. 총 발표 논문 수

구두발표 수	포스터 발표 수	총 발표 논문 수
48	62	110

4. 논문 중 외국인 발표자 비율

한국인 비율 (건수)	외국인 비율 (건수)	전체 논문 비율 (건수)
0.9 % (1)	99.1 % (109)	100 % (110)

- 5. 증빙서류 : 학회 프로시딩 표지, 발표논문 목차, 초록, 웹페이지 첫화면, 강연자 List
- * 국제학회 충족 기준
 - 1. 과학기술(기초, 융복합) 분야
 - 4개국(대한민국 포함)이상 참여
 - 총 구두발표 논문이 20건 이상
 - 구두발표의 논문 발표자 중 외국기관 소속 외국인이 50% 이상

	지도교수	
결		
재		